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Unruh effect

n An accelerated observer through the flat Minkowski
spacetime vacuum will observe a thermal bath,  a : 
constant acceleration

n Similar to Hawking radiation
n Event Horizon (Black wall vs  Schwarzschild radius) 

prevents communication between different region of 
space time, which plays a role of heat bath

n Thermal effect without underlying stochasticity
→ Thermal mixed state from pure quantum state
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Hawking radiation
n Black Hole of mass M
n Vacuum fluctuation, particle-antiparticle pair 

creation/annihilation, near Schwarzschild radius 
n one of pair escape from BH,  and the other fall into BH
n Emitted particle spectrum turns out to be blackbody radiation with 

temperature

n Blackhole lose mass (energy conservation), eventually evaporate, 
information paradox
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Rindler spacetime
n Flat Minkowski spacetime
n Consider an observer with constant acceleration a=1 in x-axis. 

Observer is at rest at t=0 and x=1
n Natural coordinate for the observer is Rindler coordinate (co-

moving coordinate) (t,x) ->  (ξ, η)

n The observer’s trajectory is  ξ=1, and all η
n The Minkowski metric in Rindler coordinate
n spacetime is separate into two parts,

left and right Rindler wedges, 
doesn’t communicate each other

n From observer’s point of view (ξ=1),
light moves at ξ<1 is slower than 1. 

n At ξ=0, light stops  (Black wall).
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Thermalization theorem
n Spacetime with time-like Killing vector (metric is invariant along 

with the vector)  has well defined energy
n Thermalization theorem (Tolman-Eherenfest):

For any thermal equilibrium field, local temperature times time-
like Killing vector is constant:  
c.f. redshift frequency

n Vacuum of Massless Dirac field  (Fermi sea)

n Vacuum of accelerated observable, Hamiltonian HR
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n Minkowski vacuum is not vacuum (either eigenstate) of HR

n For the observer, field in  left Rindler Wedge (LRW) is not causal, 
state of LRW dof is traced out (loss of information)

n Density matrix can always formally written as a thermal state using 
entanglement Hamiltonian HE

n HE and HR commute according to boost invariance of Minkowski
vacuum

n It can be explicitly proved HE is proportional to HR 

n Minkowski vacuum  turns out stationary to an accelerated observer
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Unruh effect
n Two different mode expansions of the same fermion field with

definite wavefunctions
n Bogoliubov transformation
n Occupation of Rindler mode on the Minkowski vacuum (IR cutoff by 

radius ε)

n De Witt detector (minimally coupled to fermion field at r ), whose 
absorption/emission is written by Wightman function

x(t) : trajectory of the observer, cx is the annihilation operator at x

n detector response function G(ω) ,  Fourier transformation of G(t)
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Unruh effect (contd.)
n Minkowski operator bk in terms of coordinate space operator cx                            

(Mkx : wave function = plane wave)

n Rindler operator dq in terms of coordinate space operator cx
(Rqx :   wave functions )

n c.f. Bogoliubov transformation

n Detector response function

is the Fermi-Dirac thermal distribution  (in 1+1 dim and 3+1 dim)
is  Bose-Eistein distribution (in 2+1 dim) for Fermion, and opposite for 

Boson  (Takagi’s inverse theorem)
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Dirac fermion in Rindler Lattice
n Minkowski Dirac Hamiltonian 

n curved spacetime Hamiltonian  (wµ : spin connection)

n Rindler coordinate
n spin connection (others are zero)
n Dirac equation and Hamiltonian density

n Second quantized Hamiltonian
n x=0 is the boundary (any boundary condition is allowed at |x|=0)
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Eigenstate of Rindler Hamiltonian in 1+1 dim

n 1-particle Hamiltonian (density)
n variable transformation u = log(x). ( boundary x=0 is u→ - ∞ )

n eigenvalue equation

n eigen functions  ( plane waves in u = log(x) )

orthonormal

n Spinor structure 
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Lattice Discretization
n 1+1 dim

n xm = m d,  d : lattice spacing,  m = -(L-1) / 2, …, (L-1)/2, even L

n symmetric derivative for 

n 1 particle Hamiltonian

n for 2+1 dim 
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Simulating Unruh effect
n Detector response function G(ω), Fourier transformation of

n Measure overlap between the states of one-hole excitation at t=0 
and t

n In Right Rindler coordinate,  observer’s trajectory is x(0) = x(t) = 
x0 (frame independence, equivalence principle)

n Strategy :  quench from Minkowski Hamiltonian to Rindler
spacetime

1. Prepare Mikowski vacuum 
2. Quench :   Switch Hamiltonian from Minkowski HM to Rindler HR

quench introduces event horizon, disconnecting the L/R Wedges
3. Measure G(t) in Rindler frame at x=x0
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Numerical simulation
n 2+1 dim and 1+1 dim

n space size Lx, Ly
n time step t0 for Minkowski

n time step t0’ for Rindler
chose  t0’ = 2 t0 / Lx

n Lattice spacing d = t0

expectation
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n Lx = 500, 1+1 dim

n x = md  (smaller x is hotter temperature)
n |ω / t0 | > 1 is time-step discretization
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n 2+1 dim Lx = Ly = 100

n Bose Einstein distribution

n transition from 1+1 dim to 2+1 dim
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Discretization error
n 1+1 dimension  (Fermi-Dirac)

n 2+1 dim   (Bose-Einstein)
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Discussions and Prospects
n Authors proposed optical lattice experiment
n Apply this in digital quantum computation?  

Number of Qbits too demanding ?

n Unruh effect for interacting theory such as Schwinger model?
(radiation for photon and electron ?)

n Pure quantum state, namely Minkowski vacuum, turns into thermal 
mixed state preparation, which is exponentially large operation 
otherwise.

n Minkowski vacuum could be prepared via adiabatic deformation from 
solvable Hamiltonian  (Gumaro, Yuuta et al are now trying ultra-
efficient preparation)

n Could we engineer different coordinate system so that the
temperature is constant everywhere ?
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